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1 Introduction

Recently, the electromagnetic knots have attracted much attention [1–3]. They are the

solutions of the Maxwell equations in the vacuum possessing knot structures. As every

physicist knows, the Maxwell equations in the vacuum are given by

∂µFµν = 0, ∂µF̃µν = 0, (1.1)

where Fµν and F̃µν are defined by

Fµν = ∂µAν − ∂νAµ, F̃µν =
1

2
εµναβFαβ (1.2)

in terms of the 4-potential Aµ. Here εµναβ is the totally anti-symmetric Levi-Civita tensor.

They might be important in plasma physics and fluid dynamics. Besides theoretical inter-

ests, it was discussed that the electromagnetic knots might be the origin of the phenomenon

of ball lightning [4–6].

On the other hand, Ferreira [7] succeeded in obtaining the 3 + 1 dimensional solutions

of a model, which we refer to as the conformal nonlinear σ model (CNLSM) in this paper,

for a complex scalar field. It is expected that the CNLSM has connections to the low

energy limit of the Yang-Mills theory and the Skyrme-Faddeev model [8, 9].

Because of the conformal symmetry of the electromagnetism and the CNLSM, the

solutions of both theories can involve a parameter specifying the space-time scale and

the energies associated with these solutions are proportional to the inverse of this scale

parameter. Therefore they cannot be energetically-stable configurations. The solutions of

both theories, however, can be topologically-stable in the sense that conserved topological

numbers can be defined for them.

Two Hopf indices are defined for an electromagnetic knot, while a single Hopf index is

defined for a solution of the CNLSM.

The Lagrangian density of the CNLSM is given by [7]

LF = −1

4
HµνH

µν , (1.3)
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where Hµν is defined by

Hµν =
1

2
n · (∂µn × ∂νn) =

1

i

(∂µu∂νu∗ − ∂νu∂µu∗)

(1 + uu∗)2
. (1.4)

Here n denotes a point on S2

n =
(

n1, n2, n3
)

, n2 = n · n =
3
∑

a=1

nana = 1 (1.5)

which is related to the complex field u by the stereographic projection

n =
1

1 + uu∗ (u + u∗,−i(u − u∗), uu∗ − 1) or u =
n1 + in2

1 − n3
. (1.6)

Regarding u and u∗ as the fundamental fields, the field equations are given by

∂µ (Hµν∂νu) = 0, ∂µ (Hµν∂νu
∗) = 0. (1.7)

In this paper, we discuss that these two theories can cross-fertilise each other. We show

that the electromagnetic configurations discussed in the theory of electromagnetic knots

supplies us with a new class of solutions of the CNLSM different from those obtained by

Ferreira.

Conversely, we show also that Ferreira’s solution of the CNLSM, which we hereafter

refer to as F-Hopfions, supplies us with a class of exact magnetic knot configurations in

some electric charge and current distributions. We investigate the electric field, magnetic

field, electromagnetic energy, electric charge density and the electric current density which

arise from F-Hopfions. If we adopt the same scale parameter in the simplest nontrivial

examples of the two theories, it turns out that the energy of the electromagnetic field

obtained from F-Hopfion is equal to the half of that of the configuration discussed in the

theory of electromagnetic knot.

This paper is organized as follows. In section 2, we first discuss that F-Hopfions are the

3 + 1-dimensional generalizations of the Hopf fibration. We then compare the simplest F-

Hopfion with the configuration of the complex scalar fields appearing in the electromagnetic

knots. We next obtain new solutions of the CNLSM which are different from F-Hopfions.

In section 3, we investigate the electromagnetism implied by F-Hopfions. It corresponds to

the electromagnetism not in the vacuum but in non-vanishing electric charge and current

distributions. We discuss some properties of them. The final section is devoted to summary.

2 F-Hopfion and Hopf fibration

Guided by the invariance of CNLSM under the conformal group SO(4, 2) of the four-

dimensional Minkowski space-time [10], the following variables Y, ζ, ϕ and ξ are introduced

in [7]. Expressing (x0, x1, x2, x3) as (t, x, y, z), they are defined by

t =
a

p
sin ζ, x =

a

p

cos ϕ√
1 + Y

, y =
a

p

sin ϕ√
1 + Y

, z =
a

p
sin ξ

√

Y

1 + Y
,

p = cos ζ − cos ξ

√

Y

1 + Y
, (2.1)
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where a is an arbitrary constant parameter of the dimension of length which fixes the

space-time scale. For simplicity we hereafter set a = 1. Then we have

Y =

(

1 + s2
)2

+ 4z2

4ρ2
, tan ϕ =

y

x
, tan ζ =

2t

1 − s2
, tan ξ = − 2z

1 + s2
.

s2 = t2 − r2, r2 = ρ2 + z2, ρ2 = x2 + y2. (2.2)

It is striking that the Ansatz

u =

√

1 − g

g
eiΦ, g = g(Y ), Φ = Φ(ξ, ϕ, ζ) = m1ξ + m2ϕ + m3ζ, (2.3)

with m1,m2,m3 being integers and m1 +m2 +m3 being an even integer is compatible with

the field equation and the single-valuedness of u [7].

Under the Ansatz (2.3), the field equation (1.7) is reduced to a linear ordinary differ-

ential equation

d

dY

(

Λ
dg

dY

)

= 0, Λ = m2
1(1 + Y ) + m2

2Y (1 + Y ) − m2
3Y. (2.4)

The solutions of this equation can be classified by the parameters ∆ and b defined by

∆ = 1
4m2

2

[

(m1 + m3)
2 − m2

2

] [

(m1 − m3)
2 − m2

2

]

, b =
m2

1
+m2

2
−m2

3

2m2
2

and the Hopf index of

the solution was calculated to be QH = m1m2[g(0) − g(∞)] [7].

We first discuss the simplest nontrivial case (m1 = m2 = 1, m3 = 0) briefly. In this

case, the field equation becomes d
dY

[

(Y + 1)2 dg
dY

]

= 0. If we adopt the boundary condition

g(0) = 0, g(∞) = 1, we obtain g(Y ) = Y
Y +1 , from which we have

u =
ei(ξ+ϕ)

√
Y

. (2.5)

We then find

u = iφH at t = 0, (2.6)

where φH is the Hopf fibration

φH =
2(x + iy)

2z + i(r2 − 1)
. (2.7)

In other words, the simplest example of F-Hopfion is a 3 + 1-dimensional generalization of

the Hopf fibration. We note that the Hopf index of the above u is equal to −1.

The 3+1-dimensional generalizations of φH different from the above u are given by [2–

4, 6]

ηm = − [Ky + t(K − 1)] + i(tz − Kx)

(Kz + tx) + i[K(K − 1) − ty]
,

ηe = i
(Kz + tx) + i[Ky + t(K − 1)]

(tz − Kx) + i[K(K − 1) − ty]
,

K ≡ 1

2
(1 − s2) =

1

2
(r2 − t2 + 1). (2.8)
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Although we can introduce the scale parameter a similarly to the case of F-Hopfion, we

consider the case of a = 1 again for simplicity. The remarkable property of the pair (ηe,

ηm) is that they satisfy

1

i(1 + ηmη∗m)2
∂(ηm, η∗m)

∂(y, z)
=

1

i(1 + ηeη∗e)
2

∂(ηe, η
∗
e )

∂(t, x)
,

1

i(1 + ηeη∗e)
2

∂(ηe, η
∗
e)

∂(y, z)
= − 1

i(1 + ηmη∗m)2
∂(ηm, η∗m)

∂(t, x)
. (2.9)

We also have the relations obtained by replacing {(y, z), (t, x)} in (2.9) by {(z, x), (t, y)}
and {(x, y), (t, z)}. It is easy to find

ηm = iφH , ηe = (iφH)(x,y,z)→(z,y,−x) at t = 0. (2.10)

They were the starting configurations of the discussion of the electromagnetic knots [2, 3].

Comparing (2.10) with (2.6), we see that the simplest F-Hopfion coincides with ηm at

t = 0. Rewriting ηm and ηe in terms of Y, ζ, ϕ, ξ, we have

ηm = − eiϕ −
√

Yeiξ tan ζ√
Y e−iξ + ie−iϕ tan ζ

, (2.11)

ηe = −
(

eiϕ −
√

Yeiξ tan ζ√
Y e−iξ + ie−iϕ tan ζ

)

(x,y,z)→(z,y,−x)

. (2.12)

With the help of (2.9) and the others, it can be readily seen that both ηm and ηe also solve

the CNLSM. It is clear that neither ηm nor ηe satisfy Ferreira’s Ansatz (2.3). Thus we

have found new solutions of the CNLSM from the configurations found in the theory of the

electromagnetic knots.

3 Electromagnetism implied by F-Hopfion

As for the electromagnetic knots, the following elctric field E and the magnetic field B

were discussed in [6]:

E =
1

i

∇ηe ×∇η∗e
(1 + ηeη∗e)

2
, B =

1

i

∇ηm ×∇η∗m
(1 + ηmη∗m)2

. (3.1)

From the definition (2.8) and the property (2.9), E and B satisfy the Maxwell equations

in the vacuum:

∇ · B = 0,
∂B

∂t
+ ∇× E = 0,

∇ · E = 0,
∂E

∂t
−∇× B (3.2)

and the constraint

E · B = 0. (3.3)
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We now define the electric and magnetic fields associated with Ferreira’s solution by

BF = (BF,x, BF,y, BF,z) = − (H23,H31,H12) ,

EF = (EF,x, EF,y, EF,z) = (H01,H02,H03) . (3.4)

From the definition (1.4), we obtain εµναβ∂νHαβ = 0 which is equivalent to

∇ · BF = 0,
∂BF

∂t
+ ∇× EF = 0. (3.5)

The definition (1.4) also yields

EF · BF = 0. (3.6)

The field equation (1.7) yields the constraints

ρF
∂Y

∂t
+ jF · ∇Y = 0, ρF

∂Φ

∂t
+ jF · ∇Φ = 0, (3.7)

where ρF and jF are defined by

∇ · EF = ρF , ∇× BF − ∂EF

∂t
= jF . (3.8)

Regarding (3.5) and (3.8) as the Maxwell equations, ρF and jF can be interpreted as

the electric charge and current densities, respectively. The definition (3.8) ensures the

continuity relation

∂ρF

∂t
+ ∇ · jF = 0. (3.9)

From the constraint (3.7), we obtain

EF · jF = 0, (3.10)

which guarantees that εF defined by

εF ≡=
1

2

∫∫∫

dxdydz
(

E2
F + B2

F

)

(3.11)

is conserved. In [7], it was shown that there exist infinite number of conserved quantities

in the CNLSM and how to construct them. We also find

BF · jF = BF · (∇× BF ) − EF · (∇× EF ), (3.12)

each term on its r.h.s. being of the Chern-Simons type. Hence the integral of BF · jF is

invariant under a wide class of gauge transformations.

The components of BF and EF are calculated as

BF,x =
C

ρ4Λ

[

yLm1 − xz(1 − s2)m2 + 2tyzm3

]

,

BF,y = − C

ρ4Λ

[

xLm1 + yz(1 − s2)m2 + 2txzm3

]

,

BF,z = − C

2ρ4Λ

[

(t2 − z2)2 − ρ4 + 2(t2 + z2) + 1
]

m2,

L = 1 + t2 + r2, (3.13)

– 5 –
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and

EF,x = − C

ρ4Λ

[

2txzm1 − ty(1 + s2)m2 + x(1 + s2 + 2z2)m3

]

,

EF,y = − C

ρ4Λ

[

2tyzm1 + tx(1 + s2)m2 + y(1 + s2 + 2z2)m3

]

,

EF,z =
2C

ρ2Λ
(tm1 + zm3)m2, (3.14)

where C is a constant. In the case that g satisfies the boundary conditions g(0) = 1, g(∞) =

0, it is fixed as C =
(m2

1+m2
2−m2

3)w

ln( 1+w

1−w
)

, w =
√

∆
b .

It is tedious but straightforward to obtain ρF and jF = (jF,x, jF,y, jF,z). They are given by

(

−ρ4Λ2

2C

)

ρF = Lm3(Y
2m2

2 − m2
1) + 2tzm1[(Y + 1)2m2

2 − m2
3] (3.15)

and
(

−ρ4Λ2

4C

)

jF,x =Y 2(txm2 + ym3)m2m3

+ (Y + 1)2(xzm2 − ym1)m1m2 − x(tm1 + zm3)m1m3,
(

−ρ4Λ2

4C

)

jF,y =Y 2(tym2 − xm3)m2m3

+ (Y + 1)2(xm1 + yzm2)m1m2 − y(tm1 + zm3)m1m3,
(

−ρ4Λ2

C

)

jF,z =4tzm3(Y
2m2

2 − m2
1)

+
[

4ρ2Y + 1 − s4
]

[(Y + 1)2m2
2 − m2

3]m1. (3.16)

Up to now, we have presented discussions for general m1,m2 and m3. We now consider

the simplest nontrivial case (m1 = m2 = 1,m3 = 0). We set the boundary condition

g(0) = 1 and g(∞) = 0. For this F-Hopfion, the Hopf index is equal to 1 and we have

||BF || =

√
Y + 1 + t2

ρ3(Y + 1)2
, (3.17)

||EF || =
2|t|

ρ2(Y + 1)3/2
, (3.18)

B2
F + E2

F =
(1 + 4t2ρ2)(Y + 1) + t2

ρ6(Y + 1)4
. (3.19)

In figure 1-3, we show the time-development of ||BF ||, ||EF || and B2
F + E2

F on the

plane z = 1.

We find that these quantities are concentrated on a circle
√

x2 + y2=f(t) with f(t) an

increasing function of t.

The electric current density becomes

jF,x =
−4(xz − y)

ρ4(Y + 1)2
, jF,y =

−4(x + yz)

ρ4(Y + 1)2
, jF,z =

−2(1 + z2 + t2 − ρ2)

ρ4(Y + 1)2
(3.20)
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(a) t=3 (b) t=4 (c) t=5

Figure 1. Behavior of ||BF || on the plane z = 1.
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Figure 2. Behavior of ||EF || on the plane z = 1.

(a) t=3 (b) t=4 (c) t=5

Figure 3. Behavior of B2

F
+ E2

F
on the plane z = 1.

and hence

||jF || =
2
√

L2 − 4t2ρ2

ρ4(Y + 1)2
. (3.21)

In figure 4, we show the time-development of ||jF ||. We find a behavior similar to

those of ||BF ||, ||EF || and B2
F + E2

F .

The electric charge density ρF becomes

ρF =
−4tz

ρ4(Y + 1)2
=

−64tz

[(1 + t2 − r2)2 + 4r2]2
. (3.22)

In figure 5, we show the time-development of ρF on the plane z = 1.

On the other hand, defining ε by

ε ≡ 1

2

∫∫∫

dxdydz
(

E2 + B2
)

, (3.23)
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(a) t=3 (b) t=4 (c) t=5

Figure 4. Behavior of ||jF || on the plane z = 1.

(a) t=1 (b) t=2 (c) t=3

(d) t=4 (e) t=5 (f) t=6

(g) t=7 (h) t=8 (i) t=9

(j) t=10

Figure 5. Behavior of ρF on the plane z = 1.

and observing

E2 = B2 =
64
(

1 + t2 + r2 + 2ty
)2

[t4 − 2t2(r2 − 1) + (r2 + 1)2]3
, (3.24)
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we obtain

εF =
1

2
ε = 4π2 (3.25)

from (3.11), (3.19). This result is expected from the observation

B2
F = B2 = E2, EF = 0 at t = 0. (3.26)

At t = 0, ρF vanishes and jF satisfies the relation

jF =
8BF

r2 + 1
. (3.27)

||jF || simplifies to the spherically symmetric configuration 32
(r2+1)3

. The net current de-

fined by

JF =

∫∫∫

dxdydzjF (3.28)

is non-vanishing and is given by
(

0, 0,−8π2

3

)

.

4 Summary

We have seen that Ferreira’s solution of CNLSM defined by (1) gives rize the electromag-

netic fields EF and BF for the charge density ρF and the current density jF satisfying the

constraints (3.7). We have investigated some of their properties. We have shown that we

can construct exact solutions of the CNLSM from the examples considered in the theory

of electromagnetic knots. We finally note that the fields BF and EF are described by a

simple 4-potential [7]

AF,µ =
1

2
[(g(Y ) − 1)(m1∂µξ + m3∂µζ) + m2g(Y )∂µϕ] , (4.1)

while the 4-potential Aµ realising BF and EF is somewhat complicated [6]. The knot

structure of BF is inherited by the Hopf index associated with u. On the other hand,

the knot structures of B and E are inherited by the Hopf indices associated with ηm and

ηe, respectively.
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